Next ACE Machine Tool Training Hub Planned for North Carolina

MAG introduces a fast volumetric error compensation (VEC) system capable of analyzing and correcting positioning errors in all machine-tool axes simultaneously to achieve significantly improved machining accuracies on large parts. The MAG VEC methodology reduces the time to determine needed error compensations from days to hours, and integrates both linear and rotary axes into the tool point compensation process, according to Jim Dallam, MAG’s VEC product manager. Developed and proven by a government/industrial consortium, multi-axis VEC was conceived especially to improve machining accuracies for large machine tools needed to produce today’s large, monolithic and complex-shaped parts. The new VEC system received a Defense Manufacturing Excellence Award from the National Center for Advanced Technologies (NCAT) in December 2009. A Boeing official called it a “groundbreaking process” that will dramatically reduce assembly and fitting costs — $100 million a year on large programs like the F-18 or 700 aircraft series.

VEC is offered as a standard option on new MAG machines and is available through MAG’s service group for field upgrade of legacy machines. “It gives plant management a practical and affordable way to raise a machine’s process capability, typically in less than a day, to meet the tighter accuracies required on new parts and programs in the aerospace industry,” said Mr. Dallam. “It’s one thing to hold tight tolerances over short distances along a linear axis, but it's far more difficult along all arbitrary contours and orientations within a volume encompassing several meters. Multi-axis VEC gives management the ability to run a large high-value part with confidence, without today’s worries, stops, checks and rework.”  

Multi-axis VEC collectively treats all of a machine’s degrees of freedom that affect tool point positioning, unlike conventional calibration methods that sequentially examine machine motion one axis at time, Mr. Dallam explained. Conventional approaches to volumetric compensation are generally limited to three linear axes and the associated total of 21 potential motion error sources. However, a typical five-axis machine with linear and rotary axes can have 43 potential error sources, not just 21. MAG’s multi-axis VEC system compensates for all these, and even more, in machines with unique and more complex multi-axis configurations, Carbide Turning Inserts he noted.

“Traditional piecemeal compensation of one axis at a time does not consider axis kinematic relationships and their effect on volumetric accuracy,” he said. “MAG’s VEC solution is unique in considering the full interrelated effects resulting from the kinematic stack-up of the machine tool axes. This holistic methodology enables volumetric error compensation for every point orientation and path combination inside the work volume.”

The multi-axis methodology originated in Boeing R&D, St. Louis, Missouri, and uses laser technology from Automated Precision, Inc. (API). A laser source, the T3 Laser Tracker, is placed in the work piece position. It directs the laser beam to the Active Target, mounted in the machine tool’s spindle. These interact to maintain a metrology “beam CNMG Insert lock” during the volumetric calibration event.

To perform a VEC event, an NC program positions the Active Target to a cloud of some 200 points representing a series of statistically randomized multi-axis “poses” within the work envelope. The same NC program is run three times, Dallam explained, first with the Active Target at a long tool length, then twice again at a short tool length. The 200 commanded and measured positions from the first two runs are mathematically combined to establish each tool axis vector orientation and the third run gives a measure for repeatability. Automated software processes all pose/point data as simultaneous polynomial equations to determine volumetric compensation based on the kinematic error model of the machine.

The compensation solution is then entered into the control, where “compile cycle” technology integrates the compensations into real-time CNC path control algorithms. The volumetric accuracy compensations work in conjunction with, and on top of, traditional, underlying single axis and cross-axis comps, said Mr. Dallam.

Boeing, MAG, API and Siemens were members of the industry/government consortium that developed the VEC under the program for Volumetric Accuracy of Large Machine Tools (VALMT). Other participants were the National Center for Manufacturing Science, U.S. Air Force Logistics Center, Naval Foundry and Propeller Center, U.S. Navy Fleet Readiness Center, East, and U.S. Army Anniston Depot. The system was tested and proved out on three large machine tools offering different axis configurations.
 

The Carbide Inserts Website: https://www.estoolcarbide.com/product/professional-manufacturer-for-shoulder-milling-cutters-and-vertical-milling-cutters-jdmt070208-indexable-milling-inserts/

World Machine Tool Report Shows Manufacturing Shift to North America

Control Micro Systems (CMS) has developed turnkey laser marking and cutting systems for the medical industry. The company’s Ytterbium fiber (1,064-nm), frequency-doubled Nd:YVO4 (532-nm) and frequency-tripled Nd:YVO4 (355-nm UV) lasers effectively mark both LDPE and HDPE materials. This capability is beneficial for manufacturers of products such as endoscopic guidewire devices, which are frequently marked with brand and model information as well as measurement scales. The results are sharp, durable and represent a cost savings compared to inkjet or pad printing processes, CMS says.

The high-power Ytterbium fiber laser can also be used to terminate and seal-braid 304 and 316 stainless guide wire that is pulled from a reel and cut to length. The laser not only cuts through the braided steel, but welds the individual Carbide Turning Inserts strands together to prevent unraveling, creating a semispherical tip on each end. 

Another potential application is the cutting of eyelets at the ends of latex catheters. According to CMS, the eyelets can be cut with little to no debris or remelt material. Instead, the latex in the eye can be ablated using the company’s CO2 (10,640-nm) laser with high-speed galvanometer beam delivery to completely remove all material in under a deep hole drilling inserts second.

The Carbide Inserts Website: https://www.aliexpress.com/item/1005005871601234.html

What is the Tool Development Trend in Present Machining Industry

Unisign Machine Tools has developed a new CNC machine for the truck industry: the Uniaxle.

The Uniaxle provides a  dedicated CNC machining center where welded and cast rear axles can be machined in a single setup. According to the company, it will improve the accuracy and quality of rear axles, and production processes will be quicker and more cost-effective.

With the Uniaxle, the rear axle in the CNC machine is not what rotates; rather, the cutting tool rotates around the rear axle. With this structural design, Unisign engineers have reportedly eliminated the imbalance in the rotating tools. Manufacturers can machine rear axles at high speed and very accurately.

In addition to the turning head, the rod peeling inserts Uniaxle also has a milling spindle. All turning and milling operations on the rear axle are carried out at the same time. For example, while an axle end is being created at the left, a flange is being milled at the right. Another advantage is the rotation unit which turns the rear axle through 90° so the milling spindle can also machine the rear axle banjo.

The Uniaxle is said to provide cycle times of 30 min/axle (13,000 rear axles/year), a wide range of rear axles, high machining speed and accuracy and no imbalance. It is an unmanned machine that is designed to deep hole drilling inserts take up less space in the shop while providing high efficiency with an automatic loading crane.

The Carbide Inserts Website: https://www.aliexpress.com/item/1005005876032827.html

Kaiser Manufacturing’s Tool Caddy Safely Stores Cutting Tools

One of the first clues that Precision Plus is different from other machine shops was a gentle clicking noise. The sound emanates from more than a dozen mechanically driven Swiss-type lathes at the center of the shop floor. Lined up in neat rows and serviced by obviously newer barfeeders, these machines cut uncovered, without the noise-damping enclosures that characterize the shop’s CNC machines. A closer look reveals a half-dozen or so tools simultaneously plunging in and out of the workpiece as the cams rotate.

Some of these machines had already been producing parts for years by the time the company moved to its current location in Elkhorn, Wisconsin in 2000. Under the leadership of company president Mike J. Reader, the company has since added various newer CNC equipment, including Miyano ABX and BNX two-spindle lathes as well as multiple Star and Tsugami Swiss-type CNC lathes. And yet, Precision Plus still relies heavily on equipment that operates in much the same way as it did when Reader’s father, Phil, first purchased the company in 1988 – that is, by using physical cams rather than CNCs to space out the timing and depth of cuts. Why?

This was my first question to Michael P. Reader, VP of Engineering (and Mike Reader’s son). His answer was simple: “The cam-driven machines, when they can be used, are cheaper to operate,” he says.

“For small cylindrical parts with higher annual volumes, the Swiss cam machines are very economical,” says Reader. The fleet of mechanically driven Swiss-type lathes from Tornos have lower electrical costs, and crucially can often cut parts significantly faster.

That last factor might be surprising to some, as a computer-operated machine tool seems like it should have no problem competing with a machine that has absolutely no computing power whatsoever. However, the cam-driven machines can utilize multiple cutting tools at once, with very little travel. “All the tools are at rest less than two inches from the part,” Reader says, gesturing to a semicircle of cutting tools frantically cutting a firing pin out of a thin bar. “This makes it much faster than a CNC.”

How much faster could it be? “We have one part that would take eight seconds per piece on a Swiss CNC,” Reader says. “On the cam machine, it takes three seconds.” More than doubling production speed is a major difference, especially when dealing with high volumes. “If we had to use a CNC on that part,” he says, “we wouldn’t even break even.”

But when are the CNC machines preferable?

“It really depends on the needs of the part,” Reader says. “Some parts need increased precision, which a Swiss CNC provides.” Take the example of a dental component the facility produces. At one end, the diameter is only 0.01 inches thick, and its length-to-diameter ratio is quite high, so it requires additional support to eliminate chatter and prevent breaking the component off in the machine. These features of the part make the CNC necessary, as it is capable of higher precision and greater rigidity. Additionally, surface roughness must be nearly flawless, as a slight imperfection can be catastrophic. “We need to make sure we hit the tolerance exactly,” Reader says. “If this dental component had any surface imperfections, it could lead to crack propagation and failure during use.”

I think anyone who has sat in a dentist’s chair is grateful for the increased precision of the CNC machine.

Factors other than tolerance can play into the choice to use the CNC machines. For starters, they can handle larger parts – 12, 20 or 32 millimeters, depending on the machine. Additionally, parts like the dental component require high-pressure coolant, which is not possible in the cam-driven Swiss lathes. Coolant can also be a major factor for materials that generate stringy or sticky chips, as well as valve components with O-ring’s grooves that require high pressure to remove chips.

Finally, the headstock lathes find work with larger and more complex parts up to 2.5 inches in diameter. “Generally, when we have lots of material removal or a higher degree of complexity, we’re going to utilize our Miyano platform,” Reader says. The Miyano ABX is used for aggressive and precise machining – in part due to the hydraulically operated chucks and the robust machine design the platform offers. One part used in semiconductor production involves a great deal of ID material removal, off-center drilling, threading and OD turning on high-tensile, high-yield stainless steel. On a two-spindle lathe with three turrets, the component can be machined complete in one operation at a highly competitive rate.

The other lathe – the Miyano BNX – is primarily there for its efficiency. “The BNX offers faster production rates surface milling cutters than the ABX while also allowing for fifth-decimal offsets,” Reader says. Precision Plus machines components plus-or-minus 1 ten-thousandth of an inch on OD turning, and a total of 3 ten-thousandths on ID bores. When it does not need to be quite so precise, it is capable of machining simultaneously on the main and sub spindle with the single turret, which increases throughput on many parts. Both platforms are equipped with quick-change chucking systems from Hainbuch to improve setup time and part concentricity from spindle to spindle.

As with many things in machining, it really comes down to the part. “In general, the larger and more complex the part, the more likely it is to go on the fixed headstock lathes,” Reader says. “Smaller cylindrical parts with extremely tight tolerances or that need tube process inserts high-pressure coolant go on the Swiss CNC machines. But if we can make it on the Swiss CAM machines, it will likely be faster, and just as precise, to be produced there.”

The Carbide Inserts Website: https://www.aliexpress.com/item/1005005874938885.html

Waterjet Offers Expandable Cutting Area

Most tool life management systems are good at telling you when a cutting tool is dull, but some are not so good at predicting when in the future each tool will become dull. slot milling cutters A custom-macro-based tool life manager overcomes this limitation and can help with automated machines that allow long periods of unattended operation. Maybe the operator will be doing other things while a job is running but wants to know when to return to the machine to perform tool maintenance. Or maybe the job will be running over a long period when no one will be available to perform tool maintenance (say, overnight) and the operator wants to see which tools must be replaced before he leaves for the day.

This tool life management system contains four programs. Program number O0100 (which can be renumbered and saved with each job) is the data entry program. In it, the programmer specifies the cycle time, including part loading, and the number of cycles for which each tool will last before it gets dull. He also specifies the number of tools being monitored (up to 10). Program O0001 is the main program, used to machine workpieces; program O9500 will reset the tool life data for tools after replacement; and program O9501 is the tool life monitoring program.

The operator will monitor permanent common variables #501 through #510 to see how many more hours each tool will last before becoming dull.

If an operator wants to leave the machine to do something else, these variables will tell her when to return. Or, if no one will be available for a long time (possibly overnight), she can tell which tools must be replaced before she leaves. If a tool is replaced before it is dull, she simply sets the related permanent common variable (#501–#510) to zero, and the tool’s life will be updated when the next cycle runs.

To use these custom macros, begin the job with a new set of tooling/inserts. Modify program O0100 to specify cycle time, the number of workpieces for which each tool will last and the number of tools in the job. If one of the tool stations is not used in the job, set its related variable to a number greater than the number of workpieces in the production run. When finished, run this program once. Next, modify your machining (main) program to call custom macro O9500 at the beginning and O9501 at the end. Finally, start running production. When a tool is dull, an alarm will sound. Look at variables #501–#510 to determine which tools are dull (one or more of variables #501–#510 will have a value of zero), and perform the related tool maintenance. Reset the program to continue. 

Any time you want to see how much longer a tool will last, look at variables #501–#510. If you decide to replace tools before they are dull, remember to set the related #501–#510 variables to zero.

O0100 (DATA ENTRY and INITIALIZING)
#500=4.25 (Cycle time in min. – include loading)
#521=50.0 (Tool 1 number of cycles)
#522=70.0 (Tool 2 number of cycles)
#523=90.0 (Tool 3 number of cycles)
#524=120.0 (Tool 4 number of cycles)
#525=100.0 (Tool 5 number of cycles)
#531=5 (number of tools monitored – max. 10)

(DO NOT MODIFY BELOW)
#1=1
N1 IF [#1 GT #531] GOTO 99
#[510 +#1]=#[520 +#1]
#[500 +#1]=#[510 +#1] * #500/60
#1=#1+1
GOTO 1
N99 M30

O0001 (MACHINING/MAIN PROGRAM)
M98 P9500 (Reset times if necessary)
(Machining HERE)

M98 P9501 (Check tools)
N450 M30

O950surface milling cutters 0 (Reset time if necessary)
#1=1
N25 IF[#1 GT #531] GOTO 99
IF [#[500 +#1] LE 0] THEN #[510+#1]=#[520+#1]
IF [#[500 +#1] LE 0] THEN #[500+#1]=#500 * #[520+#1]
#1=#1+1
GOTO 25
N99 M99

O9501 (CYCLE COUNTER and TIME CHANGER)
#1=1
N5 IF[#1 GT #531] GOTO 10
#[510+#1]=#[510+#1] – 1
#1=#1+1
GOTO 5 
N10
#1=1 
N12 IF[#1 GT #531]GOTO 13
#[500+#1]=#[510+#1] * #500/60 
#1=#1+1
GOTO 12
N13
#2=0 
#1=1 
N15IF[#1 GT #531] GOTO 20
IF[#[500+#1] LE 0] THEN #2=1
#1=#1+1
GOTO 15 
N20
IF [#2 EQ 0] GOTO 99 
#2=0
#3000=100 (Replace dull tools)
N99 M99

The Carbide Inserts Website: https://www.aliexpress.com/item/1005005876032827.html